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or in some more detail:



Measuring  
CR primaries

• Differential fluxes are 
low, and decrease with 
energy as dN/dE ~E-2.7

• At E≲1012 eV   balloon 
experiments  can 
measure primary CRs

• Up to ~1014 eV space 
experiments can 
measure primary CRs

• For E≳1014 eV, need 
measure from ground

Indirect
Direct



Direct: measure primary CRs ( ≲ 1014 eV)

Indirect: measure CR secondaries ( ≳1014 eV)



Eprimary ≲ 1014 eV

Space Station Satellites Balloons
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on  ISS:



Below the knee 
results:

• The spectrum is 
roughly ~E-2.7

• Composition is 
mainly protons, 
heavy elements 
less abundant

Seo 2016



But, above ~1014 eV:

• Size/Cost forces detectors to the ground

• This is,under 10 Km of Earth atmosphere 
(until we can put detectors on the Moon)

• But relativistic CR collides with nuclei of 
atmospheric N, O → makes secondary 
particles, to whom it loses its energy



Cosmic ray  
air shower

• Two components:    
-EM (e±, γ),    and -
hadronic (π±→µ±) 

• EM: exhausted in 
upper atmosphere 
→ fluoresc. light 

• Hadronic: muons 
are harder, they can 
reach the ground (and  
the νµ reach ground)13

EM

(muons, neutrinos)

(primary)

(secondaries)

(in Earth atmosphere)

atmosphere



CR air shower cascade
• Primary CR   (p, 

He,...heavies) 
interact at top of 
atmosphere  

• Produce cascade 
of secondary, 
lighter particles 

• Both EM (e±,γ) 
and hadronic  
(N, K, π, µ, ν..) 
cascades 

• Secondaries are 
detected in air or 
at ground level



Extensive air showers



KASCADE-Grande
• Indirect detection of 

the primary CRs 
(1016-1018 eV) via 
their secondaries 

• Monte Carlo 
simulations allow 
determination of 
chemical 
composition of 
primary CRs 

• Beyond 1015 eV, 
composition 
increasingly 
weighted towards 
heavy elements, 
He, .., C, O, ..Fe
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KArlsruhe Shower Core Array DEtector - Grande

Located in Karlsruhe, Germany: (Charlemagne’s burial place)

(Indirect)

e.g. at ≳ the knee energies, 



CR spectrum  @ E < 1017 eV

• Spectrum 
steepens in a 
“knee” 

•  Knee energy 
depends on  
charge Z 

• For p, knee 
@ 1015 eV 

• For Fe, knee  
@ 1017 eV
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Emax~βcZeBL  ✔



Newest major project 2018, Dao Cheng plateau, Sichuan:





LHAASO:
Zhen Cao summary slide from 2016 (Vulcano)



• UHECRs : roughly if  E>1018 eV (EeV)

• Measurement technique: only indirect, via 
their EM and hadronic cascades

• (1) Can image effects of EM cascade in the 
upper atmosphere

• (2) Can measure hadronic cascade that 
reaches ground

Ultra-High Energy CRs:
(UHECRs)

Next:



 Uses two techniques   
for detecting CR shower: 

  
● detect air fluorescence       
photons (light) produced 
by shower particles with 
telescopes (FD) 

●detect shower particles 
(muons) on the surface 
detectors via Cherenkov 
radiation  (SD) 

Pierre Auger 
Observatory



Hybrid  FD and SD technique

FD

SD

Fluorescent 
↙light

Charged 
particles↘



FD →
schematic

←FD 
mirrors &

prime focus



astro-ph/06060004

Fluorescence detector (FD)

e± impact on N2 molecules →  
fluorescence light observed by FD 



surface detectorSD Measure Cherenkov light from charged 
particles (muons) entering water tanks



SD

• Left : SD collecting in its PMTs the Cherenkov light emitted by muon 

• Right:  Geometry of Cherenkov light cone emission y relativistic particle in a medium

surface detector



Pierre Auger Observatory: Malargue, Mendoza, Argentina:  E~ 1017 -1021 eV 
-1600 surface  detectors: water Cherenkov tanks, 11 kliters ea., 1.5 km apart  
-32 air fluoresence telescopes, 4x8 arrays of 30x30 deg. sky coverage  
-Also: tau-nu (horiz.l shower capability:  Earth-skimming & through Andes) 28

Surface detector (SD) Muons from shower →	 Cherenkov	 light	 in	 
water	 tank,	 detected	 by	 phototubes



Auger Obs. - 3000 km2  UHECR detector
Mendoza, Argentina



Surface areas of Auger and Beijing
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Jim Cronin 
Alan Watson

The Pierre Auger Observatory

Surface Array 
 1663 detector stations 
 1.5 km spacing 
 3000 km2

Fluorescence Detectors 
 4 Telescope enclosures 
 6 Telescopes per enclosure 
 24 (+3) Telescopes total

(in Argentina, Malargue, Prov. Mendoza)



Cosmic ray spectrum (2008)
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GZK cutoff 
         ↓ 

←“UHECR”→

Auger 
←data



GZK cut-off 

• “GZK” =  Greisen-Zatsepin-Kuz’min (1967) 
• “UHECR” = ultra-high energy cosmic ray,   

roughly  1018-1021 eV  =  10-2 -10  EGZK  

• EGZK  ~ 1020 eV  ≡  100 EeV (Exa-electron-Volt)         
≈  1.6x108 erg  ≈ 16  Joule  ≈ 4 calories   

• EGZK ≈  fast-serve  tennis ball  (~ 130 km/h),   or     
~ 1/10 the energy of a  bullet  (7.65 mm, .32 cal) 

• Significance:  E ≳ EGZK  protons encountering a 
~10-3 eV cosmic microwave background photon 
undergo photo-hadronic losses,   p+γ→π+n 
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Major UHECR features
expected

• GZK cut-off expected @ 1019.5 eV (CMB)

• Below ~1018.5 eV CRs may be galactic origin 
(Larmor radius rL in B~μG ≲ size of galaxy) 

• At ≳1018.5 eV CRs must be extragalactic 
origin (rL > Rgal),  could have ≠ spectrum

• Depth of maximum atmospheric penetration 
Xmax  is expected to be shallower for heavy 
nuclei (and with less variance) than for protons



ICRC17 Auger spectrum



Monte Carlo simulations of



Shower development
• ←Vertical depth Xv   slant depth X

• ↙Fe and p shower maximum vs. X

• ↓ Xmax vs. energy for γ, p and Fe

X (Eo=107 GeV)



Auger 
ICRC 17

Spectrum  &
composition,

[Xmax, Var(Xmax)]

proton

Iron

galactic

extragal.



Phenomenological fit to Auger data
An ad-hoc spectral and 
composition best-fit using
EPOS-LHC hadronic model 
(Mollerach & Roulet 2017)
where atomic numbers A :

A=1:         red      
A=2-4:      grey
A=5-22:   green
A=23-38:   cyan



Raw interpretation of
Auger data phenom. fit:
• Transition gal-extragal  @ 1018.7 eV favored

• Injection spectral slope s~ -1 favored above 
ankle (hard slope!)

• s~-2 strongly disfavored by Xmax distribution

• Xmax and σ(Xmax) favor significant fractions of  
medium-high A (heavy) elements

• EPOS-LHC favored over Sybill2.1 , QGSJet04



Can interpret a spectrum+composition
fit with physically motivated sources?

• In favor of this:  HL GRBS have shock accelerators, 
right energies, source numbers (Waxman’95, …)

• Against: for HL GRBs one expects a HENU-UHECR 
connection : IceCube say that HLGRB/HENU are not 
correlated, providing limits on UHECR contribution

• However: this is GRB model-dependent,  to resolve 
issue need more data (Waxman, He+, Hummer+)

- Most previous arguments considered HL GRBs,
i.e. the “classical”, high-luminosity GRBs

But:



Other variations on
the HL GRB theme :

• HL GRBS: High τpγ makes HENU but kills CRs,  
while low τpγ allows CR escape without HENU 
(Rachen+, Bustamante+, etc)

• HL GRBs: High photon (high τpγ) regions could 
be ≠ shocks where CR accelerated (Asano+PM)



Or,  a different 
alternative ?

• LL GRBs (instead of LL GRBs) could produce 
UHECR and/or νs (B. Zhang, Murase,…)

• Source rate much higher than for HLGRBs

• energetics, τpγ appear to be adequate

• They are a γ-faint (EM detection difficult)



B.T. Zhang, K. Murase, S. Kimura, S. Horiuchi, P. Mészáros, 
PRD’18, in press, 1712.09984

consider

Low-luminosity GRBs as the 
sources of UHECR nuclei 

(heavies too)



GRB progenitor 
stellar models

(Woosley & Heger’06)

Several fast-rotating         
pre-supernova WR *,
≠initial chem. comp. 
←e.g.  a Si-poor one

Top: chemical comp. vs. radius
Bot:  specific ang. momentum 

JISCO at ISCO vs.  radius



But:
• ≠ progenitor 

models lead to 
≠ chemical (A) 
distribution vs. 
radius, and

• also ≠JISCO vs. 
radius distrib.

• ←e.g. , Si-rich 
model Si-R-1



• JISCO = spec. mom. of last 
inner stable circular orbit, 
occurs at rISCO 

• Inside rISCO matter falls in

Jet chemical composition is characterized by 
that of the progenitor star at ~ rISCO

• Jet launched from r >rISCO 

• Chemical comp. of jet is 
that. of star at  r > rISCO



GRB Pre-SN models used 

Si-F  indicates the Si-poor initial stellar models
Si-R indicate  Si-rich  (by comparison to above)



Jet through Hypernova
• In hypernovae heavy nuclei may be synthesized 

in the semi-relativistic shocked ejecta 

• if semi-relativistic ejecta is launched before the 
jet goes through it,  jet will entrain a  nuclear 
mass fraction similar to that of the ejecta

• Used ejecta model CO138E50 (Nakamura+ ’01)  
which reproduces light curve of SN1988bw

Another possibility for jet composition:



Heavy nuclei acceleration 
& survival in jet

• Assume usual internal shock Fermi acceleration 
of protons and nuclei of atomic weight A

• Jet photon luminosity Lγ,iso determines survival 
of  nuclei A against photodesintegration and 
photomeson

• Broken power law (Band) photon spectrum



Constraint on initial Lγ,iso

 τAγ = opt. depth (interaction efficiency);  fAγ = energy loss efficiency;  r0 = base of jet



Luminosity function: LL and HL

• LL GRB: Lγ,iso≤1049erg/s

•  LF for LLGRB + HLGRB 
←(Liang, Zhang, Dai ’07)

• Contribution is dominated 
by LL GRB,  but HL GRB 
can also contribute

• Nuclei destruction dep. on 
Lγ,iso , Γ and r0 (rISCO )



CR injection & escape spectrum 

• Max. energy  ZE’p,max~1018.2 ZLγ,iso1/2 eV 

• Fermi I : injection spectrum is typically 
power law  dN’A/dE’ ~ E’s with s ~ 2       
(but for large angle scatt. or magnetic 
reconnection; may have s~1.5)

• Escape spectrum may be ≠ than injection

• 1) assume only CRs of max. energy escape

• II) or, assume escape spectrum ~ injected



CR Propagation & flux at Earth

• CRPropa 3 Monte Carlo propagation of  nuclei A

• The CMB and EBL fields as function of z lead to 
photodesintegration, Bethe-Heitler, photomeson

• Flux of nuclei A at Earth given by



Results :

B.T. Zhang, K. Murase, S. Kimura, S. Horiuchi, P. Mészáros, 
PRD’18, in press, 1712.09984



Spectrum,  
Xmax, σ(Xmax)

• Si-F-1  Si-poor model

• Blue data points: Auger, 
magenta data pts : TA

• ZE’p,max~1018.2 ZLγ,iso1/2 eV 

• Fit 𝝌2  not good (same for 
other for Si-poor models)

from Silicon-poor                
Emax escape models



Spectrum,  
Xmax, σ(Xmax)

• Si-R-1  Si-rich model

• Blue data points: Auger, 
magenta data pts : TA

• Fit 𝝌2  is now better

• Also better for Si-R2, 3

from Silicon rich             
Emax escape models



Spectrum,  
Xmax, σ(Xmax)

• Si-R-2 Hypernova model

• Blue data points: Auger, 
magenta data pts : TA

• Fit 𝝌2  is similarly good

Si-rich Hypernova    
Emax escape models 



Spectrum,  
Xmax, σ(Xmax)

• Si-R-2 Si-rich model but 
with escape power law 
spectrum index sesc=0.5 
(injection sinj =1/5)

• Blue data points: Auger, 
magenta data pts : TA

• Fit 𝝌2  is also OK

Si-rich  PL spectrum 
escape model:



 summary of
RESULTS for

UHECR
• LL GRBs from Si-R progenitors, or from 

hypernova models can explain the Auger 
spectrum and composition: Xmax, σ(Xmax), 

• Either in Emax escape model, or hard PL 
model,  favor having a hard  sinj <1.5.

(B.T. Zhang, K. Murase, S. Kimura, S. Horiuchi, P. Mészáros, 
PRD’18, in press, 1712.09984)



What about neutrinos?

• Intra-source pγ neutrinos can be estimated from

• If fmes~fpγ, this could give the IceCube observed flux 
if have fpγ~1,  i.e.,  if all nuclei are destroyed (no CRs)  

• But two-zone model where νs come from inner radii 
and UHECR from outer radii might explain both



Thanks!




