Supernova Explosion and Black Hole Formation with QCD phase transition

~ along my research history ~

Ken’ichiro Nakazato
（Tokyo University of Science）

with K. Sumiyoshi (Numazu CT) and S. Yamada (Waseda U)

Quarks and Compact Stars @ Peking University, Oct. 21, 2014
At the beginning

• from 2006, as my PhD project.
• Basic idea:
 – Collapsing core would be enough hot and dense to undergo QCD transition.
Fates of massive stars

- Stars with $> 10M_{\text{solar}}$ make a gravitational collapse and, possibly, a supernova explosion.
- Stars with $> 25M_{\text{solar}}$ are thought to form a black hole (BH).
- Observations show 2 branches.
 - Hypernovae (Rapid rotation)
 - Faint or Failed Supernovae (Weak rotation)

Nomoto+ (2006)
Failed supernova neutrinos

- Failed supernova progenitor makes bounce once and recollapse to the black hole.
- In this process, temperature and density of central region gets a few times 10 MeV and a few times ρ_0 (saturation density of nuclear matter), and a lot of neutrinos are emitted.
Hydrodynamics & neutrinos

Yamada et al., Astron. Astrophys. 344 (1999), 533
Sumiyoshi et al., Astrophys. J. 629 (2005), 922

Spherical, Fully GR Hydrodynamics

metric: Misner-Sharp (1964) mesh: 255 non uniform zones

+ Neutrino Transport (Boltzmann eq.)

Species: $\nu_e, \bar{\nu}_e, \nu_\mu (= \nu_\tau), \bar{\nu}_\mu (= \bar{\nu}_\tau)$

Energy mesh: 14 zones (0.9 – 350 MeV)

Reactions: $e^- + p \leftrightarrow n + \nu_e, e^+ + n \leftrightarrow p + \bar{\nu}_e, \nu + N \leftrightarrow \nu + N,$
$\nu + e \leftrightarrow \nu + e, \nu_e + A \leftrightarrow A' + e^-, \nu + A \leftrightarrow \nu + A,$
$e^- + e^+ \leftrightarrow \nu + \bar{\nu}, \gamma^* \leftrightarrow \nu + \bar{\nu}, N + N' \leftrightarrow N + N' + \nu + \bar{\nu}$
Hadron-quark mixed EOS

Nakazato et al., PRD 77 (2008a), 103006

- Shen EOS (1998) (+ π) for Hadronic phase
- MIT Bag model (Chodos et al. 1974) for Quark phase
 - Bag constant: $B = 250$ MeV/fm3
- Gibbs conditions are satisfied in Mixed phase.
 - $\mu_n = \mu_u + 2\mu_d$, $\mu_p = 2\mu_u + \mu_d$
 - $P_H = P_Q$
- β equilibrium (ν trapping) is assumed in Mixed and Quark phase.
 - $\mu_d = \mu_s$, $\mu_p + \mu_e = \mu_n + \mu_\nu$
Phase diagram of EOS

- \(\rho_{\text{trans.}} \) and \(\mu_B \) for high T are lower for high T
 \(
 \rightarrow \text{Consistent to well known properties.}
 \)
Maximum mass of hybrid stars

- $1.8M_\odot$ for our EOS with π and Quark
- $2.2M_\odot$ for Shen EOS
- That WAS consistent to observations of compact stars.
Evolution of the central density

- QCD transition fastens the BH formation.
- Thus it shortens the duration of neutrino emission because EOS gets softer.
• Quark transition occurs at the very late phase and trigger the black hole formation.
Shock in 2008

- M. Liebendoerfer and T. Fischer
- March, workshop at Ringberg castle.
 - They and we were studying same theme.
 - We had already submitted a paper on BH.
- August, e-mail form M. Liebendoerfer.
 - They reported a successful SN explosion.
- What is different?

Bag Constant
QCD scenario for SN explosion

Sagert et al., Phys. Rev. Lett. 102 (2009), 081101

• Bag constant is assumed to be very low
 ~ 90 MeV/fm3
• Transition density is very low.
• Core collapse \rightarrow bounce (as ordinary)
• Shock is launched but stalled (as ordinary)
• But, core collapse again \rightarrow bounce again
• Shock propagates \rightarrow successful explosion
Low bag constant case

- The maximum mass **WAS** somewhat low.
- Critical density is very low.

![Graph showing mass vs. radius and temperature vs. baryon density with different B values and Yp values.]

- saturation density
Our result

Nakazato et al., Astron. Astrophys. 558 (2013b), A50

• Confirming 2nd bounce and shock formation

\[s = 4.0k_B \]
\[Y_\ell = 0.35 \]

Mix \rightarrow Quark

Hadron \rightarrow Mix
Shock in 2010

- Pulsar J1614-2230, $M = 2M_{\odot}$

Demorest et al., Nature 467 (2010), 1081

Shapiro delay
Outlook

• Is QCD scenario hopeless?
• Discussion in workshop at Prerow (2014).
 → possibly back to `neutron’’ stars?

Phase diagram

\[T \begin{array}{c}
\uparrow

\rho

\approx 10\text{MeV}
\end{array} \begin{array}{c}
\downarrow

\rho_0

\rho_{\text{max}}
\end{array} \]

Collapse trajectory

\[T \begin{array}{c}
\uparrow

\rho

\rho_0

\rho_{\text{max}}
\end{array} \begin{array}{c}
\downarrow

Y_p = 0

Y_p = 0.5
\rho_0
\end{array} \]

• Comments welcome!