Imaging Snow Lines

Chunhua Qi 漆春华 Harvard-Smithsonian Center for Astrophysics

> CREDIT: Bill Saxton/ Alexandra Angelich

SUBMILLIMETER ARRAY (SMA)

8 X 6m dishes

Mauna Kea, Hawaii

ATACAMA LARGE MILLIMETER/SUBMILLIMETER ARRAY (ALMA)

>50 X 12m dishes

Chajnantor plateau, Atacama Desert, Chile

Star (and planet) formation stages

10⁴ yrs; 10-10⁴ AU; 10-300 K

10⁵⁻⁶ yrs; 1-1000 AU; 100-3000 K

10⁶⁻⁷ yrs; 1-100 AU; 100-3000 K

10⁷⁻⁹ yrs; 1-100 AU; 200-3000 K

Fig. by McCaughrean

Protoplanetary disk structure

[Öberg, Murray-Clay & Bergin 2011]

CO disks are "huge"

Inclination 7° •

Disk temperature decreases radially away from the star and vertically toward disk midplane

1. CO snow line location

Optically thick CO lines on the surface hide the CO freezeout information at midplane

Channel maps of molecular emission in a Keplerian Disk

Resolving protoplanetary disks spatially and spectrally

Optically thick CO lines and higher Tau=1 surfaces for higher transitions

Resolving the vertical temperature gradient in disks needs sensitive observations and an inclined disk

Resolving the vertical temperature gradient in disks needs sensitive observations and an inclinded disk

ALMA CO 3-2 Observations of HD 163296 (i=44°) [Rosenfeld et al. 2013]

Direct signature of a vertical temperature gradient and layered molecular structure in disk

Resolved $\tau=1$ surfaces of the front and back side of the disk, that was 15 degrees above the midplane. [Rosenfeld et al. 2013]

CO (radial and) vertical structure

Locating CO snow line based on SMA ¹³CO 2-1 emission

Chemical imaging of CO freeze-out: Ring structures

Chemical imaging of the CO snow line: N_2H^+ ring structure

The inner edge of N_2H^+ ring in HD 163296 disk is around 90 AU, consistent with C¹⁸O analysis

Probing CO photodesorption

[Öberg et al. 2015]

How to locate the CO snow line ...

Summary

- N₂H⁺ is sensitive to the CO freeze-out but whether it can serve as a robust probe of the CO snow line is still under debate.
- DCO⁺ can be used as a probe of the CO desorption, although more works are needed to disentangle the nature of desorption.
- Optically thin CO isotopologue emission can be used locate the CO snow line directly but very tricky due to optical depth and sensitivity issue.

2. N₂ snow line

N₂ and CO freezeout temperature only differ by about 3-4 K

Chemical imaging of the CO snow line: N_2H^+ ring structure

N₂ Snow line ?

CO desorption vs N₂ freezeout

[Qi et al. in prep]

[Nomura et al. 2016]

Disk vertical temperature profile

Radial distribution of the N₂H⁺ ring

(D'Alessio et al. 2006)

[Slide courtesy: Melissa McClure]

SEDs of disk models with different degrees of settling

Effects of Dust Settling on Temperature Profiles

P94: dust mixture following Pollack et al. 1994; ISM: dust mixture following Draine & Lee 1984

Robustness of N_2H^+ as tracer of the CO snow line depends on the disk temperature structure

[van't Hoff et al. 2017]

Summary

- N₂H⁺ is found to trace the layers between the CO and N₂ freezeout temperature.
- If there is a substantial layer of constant temperature plateau near the disk midplane, N₂H⁺ can be used as a tracer to both the CO and N₂ snow lines.

Collaborators: K. Öberg, D. Wilner, S. Andrews, L.I. Cleeves (CfA); C. Espaillat (Boston U.); E. Bergin, N. Calvet (U. Michigan); G. A. Blake (Caltech)

END