Thermal conduction in dilute plasma

- ➢ In dilute plasma, thermal conduction is anisotropic, along magnetic field lines.
- When temperature increase in the gravity direction: MTI
- When temperature decrease in the gravity direction: HBI

What is MTI

What is HBI

Dispersion relation

$$\omega^2 \simeq g\left(\frac{d\ln T}{dz}\right) \left[\left(1 - 2b_z^2\right) \frac{k_\perp^2}{k^2} + \frac{2b_x b_z k_x k_z}{k^2} \right]$$

Maximum growth rate for MTI:

$$\omega^2 \simeq g\left(\frac{d\ln T}{dz}\right) \frac{k_\perp^2}{k^2}.$$

Maximum growth rate for HBI:

$$\omega^2 \simeq -g\left(\frac{d\ln T}{dz}\right)\frac{k_\perp^2}{k^2}.$$

Result due to MTI

Magnetic field can be amplified by a factor of 30.

Field lines is aligned with temperature gradient

Magnitude of conduction increase

Result due to HBI

Magnetic field can be amplified by a factor of 30.

Field lines is rearranged perpendicular to temperature gradient

Magnitude of conduction decrease significantly

Implication

≻MTI:

✓ Intracluster medium (outside cool core):

Parrish, Stone, Lemaster, 2008, ApJ, 688,905

✓ Accretion disks

Sharma, quataert, stone, 2008, MNRAS, 389, 1815

≻HBI:

✓ Intracluster medium (inside the cool core):

Parrish, quataert, Sharma, quataert, MNRAS, 389, 1815

A example—reproduce (Sharma, Quataert, Stone, 2008, MNRAS,389,1815

ŨШL

What shall we do

 In rotating dilute plasma, in addition to MTI, MRI should also exists. We will examine the interplay of MTI and MRI.